
A New Look at Patent Reform:
Comparison to other suggested approaches

Lee A. Hollaar
Professor, School of Computing

University of Utah
March 9, 2007 version

Copyright © 2006-2007, All rights reserved

(The latest version of the paper can be found at
http://digital-law-online.info/papers/lah/mini-patent.htm)

Introduction
Since I first wrote the paper, two particularly noteworthy suggestions have

been published. But neither really addresses the problems I noted above, and
one would likely cause problems with copyright while not substantially helping
patents.

“Gold-plated patents”
In their paper “What to Do about Bad Patents?,”1 Profs. Mark Lemley,

Doug Lichtman, and Bhaven Sampat suggest a tiered patent system. Their
proposal recognizes that very few patents are actually litigated, or even asserted
against another party.2 There is little point in improving the examination for
every patent if there could be some way of identifying important patents, and
they propose to do that by seeing if somebody has enough interest to pay for a
better examination.

That would come about in one of two ways. Either the patent owner may
pay a substantially-larger fee for a more comprehensive examination, or
another party may require a reexamination of the patent. As the authors write,
“applicants should be able to ‘gold-plate’ their patents by paying for the kind of
searching review that would merit a presumption of validity.”3

1 Regulation, Vol. 28, No.4, Winter 2005-2006, pp 10-13, available at
http://www.cato.org/pubs/regulation/regv28n4/v28n4-noted.pdf.
2 They point to recent bad patents: “obvious inventions like crustless peanut butter and
jelly sandwiches, ridiculous ideas like a method of exercising a cat with a laser pointer,
and impossible concepts like traveling faster than the speed of light.”
3 There are two aspects to the statutory presumption of patent validity. The first is the
“burden of persuasion” which requires that the challenger of a patent must put forth
evidence of invalidity, rather than the patent owner having to prove validity as part of
its infringement claim. This only makes sense, because it is impossible for a patent
owner to show that there is no prior art anywhere in the world that would render the
patent invalid. This concept is illustrated by a court finding a patent “not invalid,”
rather than “valid,” if the defendant is unsuccessful in proving invalidity.
 The second aspect is the “burden of producing evidence,” which establishes the
sufficiency of the evidence required to prove invalidity. Patents now enjoy the
heightened requirement of clear and convincing proof, more than the normal civil
litigation standard of the preponderance of the evidence.

http://digital-law-online.info/papers/lah/mini-patent.htm
http://www.cato.org/pubs/regulation/regv28n4/v28n4-noted.pdf

The proposal does nothing to reduce the long pendency without protection
that is a special problem for fast-moving technologies, unless the patent office
decides to further reduce the quality of its examinations because there is no
longer a strong presumption of validity for patents that have not been “gold-
plated.”

Until the patent has been “gold-plated,” patent owners’ rights are in limbo
because they must either have another examination or confirm the patent
through litigation before they are sure of the scope of their rights. A patent
would become simply a notice that there may be some rights that could be
asserted after it has been further examined. And because the scope of the
patent could change substantially when it is being further examined, any notice
provided is uncertain.

In contrast, the limited patent proposed here provides immediate, but
limited, rights based on registration and use in commerce. There is no need to
further reduce the quality of examination to reduce the backlog of applications.
And the lower application fee encourages more disclosures for the patent office’s
prior art database, improving the quality of both regular and limited patents
when they are examined.

Copyrights, not patents, for software
In his book Math You Can’t Use,4 as well as two articles published in IEEE

Spectrum,5 Ben Klemens calls for the ending of patent protection for computer
software. In his view, software should be protected only by copyright.

This proposal will certainly play well with the people who are against
software patents, but experience shows that it will cause more problems than it
solves. Before it became clear through a series of court decisions that software-
based inventions were patentable, we had the system that Klemens proposes.
For those cases where an infringer simply made a literal copy of a computer
program, there was little problem. The problem came when a new program was
written using techniques from an existing program. To what extent should such
“non-literal” copying be an infringement?

The high-water mark in non-literal copyright protection for computer
software came in Whelan v. Jaslow,6 which held that the “structure, sequence,
and organization” of a computer program was protected by its copyright. We
don’t know how far courts would have continued to stretch copyright beyond
literal infringement because about the time Whelan was decided, the Supreme
Court had found a algorithm-based invention that it felt was patentable7 and
the Federal Circuit had completed its embrace of software patents with In re
Alappat.8 As software patents became the preferred means for protecting a new
technique, copyright reverted to protecting against the literal copying of a
computer program.

4 Brookings Institution Press, 2005, ISBN 0-8157-4942-2.
5 “Software Patents Don’t Compute,” July 2005, and “New Legal Code,” August 2005.
6 797 F.2d 1222, 230 USPQ 481 (3d Cir. 1986).
7 Diamond v. Diehr, 450 U.S. 175 (1981). But software patents had issued well before
then. For example, see U.S. Patent 3,568,156, “Text Matching Algorithm,” granted in
1971. (The inventor, Kenneth Thompson, is also one of the creators of the Unix
operating system.)
8 33 F.3d 1526, 31 USPQ2d 1545 (Fed. Cir. 1994).

 - 2 -

Determining what is protected
Klemens points to the ease of getting a copyright compared to a patent. A

copyright comes into being at the time of fixation of a work, and a simple
registration form must be filed before an infringement suit can be brought. But
such simplicity comes at a price – as cases like Whelan show, it is hard to
determine just what is protected by a copyright, making it difficult for a person
wanting to produce a new implementation of a computer program.9 Because of
the claiming requirement for patents, it is far easier to know in advance what a
patent covers than what a copyright covers, especially if copyrights were to
expand again to cover more and more non-literal aspects of a computer
program because patent protection is not longer available.

In his book, Klemens recognizes that it might be necessary to go beyond
protection for literal copying if copyright were to replace patents. “The correct
breadth recalls the rule of thumb that protecting the interface is detrimental
but protecting the implementation from theft is essential, but using that rule in
the copyright realm requires new considerations: copyright can be interpreted
too narrowly, since a program with the variable names changed is still the same
program.” But he gives little guidance of how that line can be drawn in practice.

More troubling, in an example he indicates that a situation where an
“imitation would likely be infringing,” he is troubled that applying the same test
to software “becomes equivalent to a patent on an interface, and … such
breadth is economically detrimental.” Presumably, he would like to see
copyright law for software develop on a different track from current copyright
law, increasing the uncertainty about the breadth of protection until suitable
case law develops and is generally accepted.

Disclosure is important
Also lost in Klemens’ proposal is the disclosure requirement that forms

such an important part of the patent system. Even with “open source” software,
it is difficult to find how a particular function is performed unless that function
is an obvious part of a known program.

In fact, since adoption of the Copyright Act of 1976, there is no longer a
requirement that the protected work even be published. A trade secret, written
down or other fixed in a tangible medium of expression, is protected to the
same extent as a book on sale,10 even though its protected expression is
unavailable except through a trade secret agreement. This is the case for most
proprietary computer software.

In contrast, a patent concentrates on one particular technique, and that
technique must be described fully in the published patent, so that a skilled
person can implement and use the technique without undue experimentation.
The disclosure is also manually placed within a classification system so that it
can be readily located.11 The limited patent proposed in this paper would

9 Linux is a new implementation based on Unix operating system. Many programs have
been reimplemented by “free software” advocates to “liberate” them from their
proprietary status.
10 Perhaps even more, since the term of a work made for hire is 95 years from its first
publication, or 120 years from the date of its creation, which ever comes first. 17 U.S.C.
§ 302(c).
11 When there are too many patents within a particular class and subclass, the patent
office breaks the subclass (and related subclasses) into more specific subclasses or

 - 3 -

continue this disclosure requirement and the classification of techniques by the
patent office, and would enhance it by encouraging more filings because of the
lower fee and simplified registration procedure.

Independent creation as a safe harbor
But there is a reason why software developers are less concerned about

copyrights than patents, including their longer term. To infringe a copyright,
you have to have based your work on the copyrighted work. No matter how
similar your work is to another, if you can show that you independently created
your work, you are not an infringer.

There is no such safe harbor for a patent infringer. If what you are doing
meets all the elements of any claim of a patent, you are an infringer. It makes
no difference whether you have ever seen the patented thing or are aware of the
patent. As some recent high-profile cases have shown, a software developer can
plow millions into development of a new system, but can be stopped by the
owner of a patent that is not even producing a product or licensing the
technology to a manufacturer.

This scares most software developers, especially when the quality of some
patents is considered. And that is why the limited patent proposed here
provides for a “substantial completion” defense as well as a showing that the
infringement is based on the patented thing.

Copyright is not the solution
Klemens spends little time on another problem with copyrights – their

term of protection. Many people think the twenty-years-from-filing term for
patents is far too long for computer software. Patents for Microsoft’s Windows
95 are now just expiring. But copyright lasts seventy years beyond the death of
the last author or, in the case of a published work made for hire, 95 years. The
copyright on Windows 95 will not expire until the end of 2090!

Eliminating software patents and going to copyright as the only protection
is likely to cause new distortions in copyright. It is better to look at those
aspects of copyright protection, such as the defense of independent creation,
combine them with the best parts of patents (enabling disclosure and required
claiming), and set an appropriate term of protection (four years, rather than 20
years for patents and 95 years or more for copyright). That is what the limited
patent proposed here does.

sometimes a new classification. For example, software-based inventions were initially a
subclass within the class for computers. They later became their own class. Now, they
span a number of classes, with an entire class for database techniques and another for
artificial intelligence.

 - 4 -

	A New Look at Patent Reform:�Comparison to other suggested a
	Introduction
	“Gold-plated patents”
	Copyrights, not patents, for software
	Determining what is protected
	Disclosure is important
	Independent creation as a safe harbor
	Copyright is not the solution

