O7-T197L

CORRECTED AMICUS BRIEF 97-7327XAD
IN THE
UNITED STATES COURT OF APPEALS
FOR THE SECOND CIRCUIT

Harbor Software, Inc.,
Plaintiff-Appellee-
Cross-Appellant,
— v' -

Applied Systems, Inc.,
Defendant-Appellant-
Cross-Appellee.

ON APPEAL FROM THE UNITED STATES DISTRICT COURT
FOR THE SOUTHERN DISTRICT OF NEW YORK

AMICUS BRIEF OF COMPUTER SCIENTISTS RE: SOFTWARE
COPYRIGHT AND TRADE SECRET CASES -- OBSERVATIONS ON
THE ABSTRACTION, FILTRATION AND COMPARISON TEST

Professor Hal Abelson, Professor Roy Campbell,
Professor Randall Davis, Professor Lee Hollaar,
Professor Gerald J. Sussian

Of Counsel:

Marc M. Arkin

140 West 62nd Street

New York, New York 10023
(212) 636 6850

Counsel to Amici Curae

September 25, 1997

Harold {Hal} Abelscn is Class of 1522 Professor of Electrical
Engineering and Computer Science at MIT and a Fellow of the IEEE. He
received the A.B. degree, surra cum laude, from Princeton University
in 1968. In 1973, he received the Ph.D. degree in mathematics from
MIT and joined the MIT faculty. In 19392, Abelson was designated as
one of MIT‘s six inaugural MacVicar Faculty Fellows, in recognition
of his significant and sustained contributiens to teaching and
undergraduate education. Abelson was recipient in 1932 of the Bose
Award (MIT’'s School of Engineering teaching award). Abelson is also
the winner of the 199% Taylor L. Booth Education Award given by IEEE
Computer Society cited for his continued contributions to the

pedagogy and teaching of introductory computer science.

Profegmor Roy Campbell received his Honors B.5. Degree in
Mathematics, with a Minor in Physics from the University c¢f Sussex in
1969 and his M.S. a;ld Ph.D. bDegrees in Computer BScience from the
University of Newcastle upon Tyne in 1972 and 1376, respectively. In
1976 he joined the faculty of the University of Illineis, where he is
currently a Full Professor of Ceomputer Science. During the past
twenty-one years, he has supervised the completion of twenty-four
Ph.D. dissertations and over seventy M.5. theses. He iz the author
of over one hundred research papers on programning languages,
software engineering, operating systems, distributed systems, and

networking.

Randall Davis has been on the faculty at MIT since 1878 and is
currently a Professor in the Electrical Engineering and Computer
Science Department. Dr. Davis nas been one of the seminal
contributors to the field of artificial intelligence and was selected

in 1984 as one of America‘s top 100 =scientists under the age of 40 by

Science Digest. In 1986 he received the Al Award from the Boston
Computer Society for nis contribmrions te the field. In 1390 he was
named a Founding Fellow of the Anerican Assogiation of AI and in 1295
was elected President of the Association. Dr. Davis has been active
in the area of intellectual property and software. In 1989 he served

as expert to the Court in Computer Associates v. Altai. Io 1990 he

served as a panelist in a series of workshops on the issue run by the
Computer Science and Telecommunications Board of the National Acadeny

of Srzience, resulting in the publication of Intellectual Property

Issues in Software in 1991. He has served as an technical expert in

a variety of software cases.

Lee A. Hollaar is a Professor of Computer Science at the University
of Utah, where he has taught a variety of computer software and
hardware courses and currently teaches intellectual property and
computer law. He has been an expert in a number of computer-related
cases. While on sabbatical leave during the 1996-97 academic year,
hie was a Committee Fellow in the intellectual property unit of the
Committee on the Judiciary of the United States Senate, advising on
computer-related intellectual property issues, and an intern at the

United States Court of Appeals for the Federal Circuit. He received

ii

his Ph.D. degree in computer science from the University of Illinois

at Urbana-Champaign in 1975 and is a registered patent agent,

Gerald Jay Sussman is the Matsushita Professor of Electrical
Engineering at the Masachusetts Institute of Technology. He received
the S5.B. and the Ph.D. degrees in mathematics from the Massachusettsg
Institute of Technology in 1968 and 1973, respectively. He has been
involved in artificial intelligence research at M.I.T. since 1964.
He is a coauthor (with Hal BAbelson and Julie Sussman) of the
introductory computer science textbock used at M.I.T. The textbook,
"Structure and Interpretarion of Computer Program,” has been
translated into‘French, German, Chinese, and Japanese. As a result
of this and other contributions to computer-science education,
Sussman received the ACM's Karl Karlstrom OQutstanding Educator Award

in 1990, and the Amar G. Bose award for teaching in 1991,

idii

Takle of Contents

I. INTRODUCTION.c¢ccrveevacasenn- R, wesea 1
II. TECENICAL COMPLEXITIES INHERENT IN THE AFC TEST 4
2. bBhstracting Scftware is a Difficult Techrnical Task Even

C.

for an Expert. e e e a e 4
Filtration Includes a Difficult Technical Task That Can
Benefit from EBxpert Opinion. ettt 5

aAbstraction and Filtration are Sensible Technical Tasks.. ... 4@

+

III.TRADE SECRETS AS A THERESHOLD ISSUE DISTINCT FROM COPYRIGHT

AND THE AFC PROCESS. v ccrvrvna-s et s e e e b e e acaaaaaan 7
A. The Nature of Trade Secrets in Seftware.-t.ecne-ne 7
B. Procedural Irmplications for Trade Secret Evaluations,

Particularly in Cases Involving Both Copyright and Trade

Secret Claims.- evenscnmoceannss e dee e et an e 10
IV. PERFORMING THE AFC PRIXESS- e e e m e taae e 15
A. Meeting the Considerations of Technical Complexity: Refining
the Magnitude of the Task. e eeven.. 15
B. A Process for Plaintiff's Performing the AFC EBvaluation....l7
C. Meeting the Considerations of Technical Camplexity: Providing
Standards for Abstracbion.... et coenanann e 23
V. COMCLUSION i i tnsnamenn-sarsantosnnencacsoesssannan 26
APPENDIX I: SAMPLE ABSTRACTION e ee s wewae-. AL
APPENDIX II: TERMINOLOGY Bt s r s e s A-10

iv

Table of Authorities

Cages Page(s)

Computer Assocs. Intl., Inc. v. Altai Imc., 982 F.2d €93 (24 Dir.

1992) e e eee e Eh et e aamaaea et aarae ettt et passim

Gates Rubber Co. v. Bando Chemical Industries, Ltd., 9 F.3d 823

(10th Cir. 1993} e s .

Lotus Dev. Corp. v. Borland Int'l, Inc., 34 U.S.P.O. 1014 (lst

Cir.199%5), aff‘d. by an equally divided court, 116 S.Ct. B804

L I L 18
Statutes

17 U.8.C. 102 ... e e e i8
Rules

Fed.R.Civ.P. 11 i nnnnn l. 20
Fed.R.Civ.P. S6 e fes i aaeartcaraaaeena 26

Miscellaneocus

U. S. Court ¢f Appeals Judge John Walker, "Protectable ‘Nuggets’
Drawing the Line Between Idea and Expressicn in Conputer

Pregram Copyright Protection,” 44 J. Copyright Soe'y U.S.A. 79,

92 (WinEer 1996) v it e ee e e e e e e s e ennnnsen G r e eaaa e is

Randall Davis, “The Nature of Software and Its Consequences for

Establishing and Evaluating Similarity," Software Law Journal,

293, Vol., V, Ko. 2, (April 1992) vt ir i e ca i e

vi

I. INTRODUCTION

This amicus brief is filed on behalf of a group of individual
computer scientists' who are concerned that there is uncertainty
among the courts in how to implement the process suggested by this
Court in Computer Assocs. Int’l., Inc. v. Altal Inc., 982 F.2d 693
(2d <Cir. 1992) ("Altai”), for evaluating copyright infringement
claims invelving computer software. This uncertainty seems
particularly manifest in cases involving allegations of both
copyright infringement and misappropriation of trade secrets. The
signatories to this brief include a number of pioneering computer
scientists whe have substantial technical backgrounds and
considerable experience as technical experts in intellectual
property lawsuits involving computer software. None of the
signatories has any ©relationship =-- including a financial
relationship -~ to any party in the present case. From reading the
district court'’s opinions and the parties’ briefs (we have not seen
the record which we understand is under seal) we believe that this
case illustrates many of the difficulties experienced by trial
courts generally i applying the Altai test. Qur interest is to
assist this Court in providing further guidance to trial courts
regarding the process for determining trade secret and copyright in
computer software, in a manner that prctects the interests of the

public, the software industry, and the free flow of ideas.

' A full list of the amici and their professional gualifications and

contributions to the computer software industry precedes the table of

contents of this brief.

In Altai, this Court adopted a three-step process of
abstraction, filtration, and comparison ("AFC") as the means by
which a ¢ourt should determine the copyright-protectable aspects of
a computer program and evaluate claims of copyright infringement.
Altai, however, provided little guidance as to precisely when or
how the district courts should implement the AFC test and its
relevance, if any, to related claims of trade secret
misappropriation. In this brief we descrike the technical
conplexity and difficulty of performing the AFC test from the
standpoint of computer science, which we have experienced in our
role as experts. We offer as well a procedural approach by whic
this Court could clarify the Altai decision for the benefit of the
lower courts. We suggest a precedure for applying the AFC test that
we believe will be useful in copyright cases and in cases involving
both trade secret and copyright claims. Under this progedure the
court would require that, prior to beginning the AFC inguiry, the
plaintiff identify its trade secrets with specificity, so that
these claims are not affected by the unrelated issues of copyright
protection. The court would then proceed with the AFC test for
coRyright protectability through the evaluation of a focused subset
of code identified by plaintiff as alleged to have been copied by
defendant, using a process in which experts for both plaintiffs and
defendants are able to challenge each other’'s abstraction exhibits
by citing specific technical criteria.

We believe that this approach will minimize the difficulties
in implementing the AFC test and will help ensure both that the

abstractions are maximally useful to the trial court and that the

entire AFC process proceeds on a technically sound basis. We also
believe that our suggested procedural steps will serve the
interests of judicial economy by focusing and testing plaintiff‘s
claims at a relatively early stage in the process, while still
preserving plaintiff‘’s right to a vigorous prosecution of its case.

We have attempted to keep this brief as jargon-free as
possible; as some technical terms were unaveidable, we have
included in Appendix II brief definitions of all the terms
emploved.

Two brief points of non-technical terminology. First, when
talking about levels of abstraction, we include the literal text of
the program as one of those levels, evidently the lowest level.
This inclusion simplifies both the discussion and practice of the
AFC process: within one framework we have AFC accomplishing both
the levels of the abstraction test envisioned by Judge Hand, and
the methodical filtration and compariscn of the literal code
traditionally carried ocut by the courts.? When discussing a program
here we generally proceed from the highes: 1level down to more
detailed 1levels ¢f abstraction, even though the process of
constructing the abstractions may start (as Judge Hand suggests)
with the literal code. Second, in speaking about software or code,
we mean by it all of the things that go inte a program: all of the

algorithms, data structures, textual commentary, etc.

! We have written elsewhere on techniques for comparing the literal

aspects of software; see, e.qg., Davis, R., "The Nature of Software and
its Consequences for Establishing and Evaluating Similarity, Software

Law Journal,” 299, Vol. V, No. 2, [April 19%2).

IIX. TECHNICAL COMPLEXITIES INHERENT IN THE AFC TEST

Performing the AFC analysis in the context of litigation is
a challenging task, in nc small measure because of the technical
difficulties that arise. These technical difficulties stem from
{1} the sheer magmitude of the task of analyzing programs that
routinely cansist of hundreds of thousands of lines of computer
code; (2) the lack cf any fixed or agreed-upon set of levels of
abstraction by which teo describe a program; (3) the interaction
of legal doctrines {such as merger, scenes a faire and public
domain) with the technical constraints of the ceomputer industry;
and (4) the rapid eveolution of these doctrines in the area of
computer software.

A. Abstracting Software is a Difficult Technical Task Even
for an Expert.

The first source of difficulty is size: commercial computer
programs often consist of hundreds of thousands of lines of code
and can, at times, run to millions of 1lines.? These programs
involve a 1level of conplexity that wvastly overshadows even the
most gargantuan literary work. A technically accurate and precise
analysis of so much detailed material is a prodigious undertaking,
even for a computer professional.

Additional difficulty arises from the lack of a fixed

standard for the levels at which to describe a program. While

3 . - .
The latest vearsion of Microsoft's Word program, for example, contains

2.7 million lines c¢f source code.

abstracting software is a familiar concept to scoftware developers,
there is as vyet no well-defined standard for selecting which
levels of abstraction to use in describing a program and no fixed
set of levels that properly characterize any given program. ¥While
this indefiniteness is commonplace in the technical world, it
creates uncertainty and confusion when transferred to the context
of the adversary process. Even the 'I‘en‘:..h Circuit's effort in Gates

Rubber Cc. v. Bando Chemical TIndustries, Ltd.. 9 F.3d 823 {(10th

Cir. 1993), to specify a set of levels of abstraction to use 1in
performing the AFC analysis offers a degree of guidance akin to
saying that a play can be described by its characters and plot; it
provides a starting peint but little more to a person charged with
describing a real play.

The difficulty is ¢of course not unigue to software: there
may be diffe;‘ences in describing the abstract elements of a
literary plot depending, for example, c¢n the nature of the work
involved and the perspective of the reader. But the problem is
more serious in the case of software due to the larger size and
complexity of programs as compared to literary works, and due to
the relative vyouth of socftware as a medium of expression,
especially compared to traditional literature with its long
history of literary analysis.
B. Filtration Includes a Difficult Technical Task That Can Benefit

from Expert Opinion.

A third difficulty arises because the filtration process
rYeguires the court t¢ determine whether certain elements of a

brogram fall outside copyright protection because of doctrines

such as merger, scenes a faire, public domain, or whether a hody
of code doss little more than enmbody a fact about the world.
These legal judgments require substantial technical expertise. It
may be & challenging task even for a technical expert <o
determine whether the expression in a body of code is necessarily
incidental to the idea being expressed (merger); whether it is
dictated by external factors (scenes a faire) such as hardware
compatibility {constraints imposed by the computer in use),
software compatibility (constraints imposed by software}, or
.industry standards; and whether a body of code is substantially
similar to or clearly derived from code in the public domain.
Given the difficulty and complexity of making these technical
judgments, this Court should clarify that this is properly a task
that can benefit from the assistance of a qualified expert in the
field. This is made all the more pressing by the fact that the
legal Jdoctrines involved in these decisions are themselves
rapidly evolving as they apply to computers, further complicating
the task and making the assistance cf a qualified expert all the
more useful.
C. Abstraction and Filtration are Sensible Technical Tasks.
Despite the difficulty of the task, c¢reating a set of
abstractions and answering the technical questions raised in
filtration are still sensible and well-founded undertakings. As
an illustration, twe unbiased experts should be able to agree on
whether an abstract description of a program was, among other
things, complete and technically accurate. Wwhile there is

judgment involved, there is also a solid body of science

underpinning that judgment. There are, for example, several well-
established notions of what kinds of abstractions make sense for

a program, including the control structure, data structures, data

flow, infermation architecture, and the textual organization of
the code. Each of these is described in more detail in the

Appendix I.

III. TRADE SECRETS AS A THRESHOLD ISSUE DISTINCT FROM COPYRIGHT

AND THE AFC PROCESS.

A. The Nature of Trade Secrets in Boftware.

In the present case, the trial court used the abstragtion
exhibits to address matters of both copyright infringement and
trade secret misappropriation. We believe that this demonstrates a
significant confusion about the nature of bo-h the abstraction
exhibits and the trade secrets likely to be embodied in computer
software. Specifically, an abstraction exhibit simply describes
part of the program’s code; alone, it does rnot indicate whether an
element of code has the economic value necessary to establish its
status as a trade secret.

As computer scientists, we would like te suggest that this
Court take this oppportunity to Ela:ify the relationship between
the abstractions prepared to evaluate the copyright protectability
of the elements cf computer software and the proof hecessary to
establish that elements of a program are entitled to trade secret
Protection. As a procedural matter, we would like to suggest that
the plainziff be regquired at the outset to specify the trade
secCrel, the specific code in which it is embedied, and the alleged

econamic value of the secret.

We understand that it is common industry practice to maintain
the source code of a computer program as a trade sSecret. Clearly,

the literal code of a program may meet the criteria for a trade

secret; that is, its owner may have kept it secret and it may have
economic value from not being generally known in the industry. The
issue is more complicated when the matter in dispute is the trade
secret status of non-literal aspects of a program of the type that
may be expressed in an abstraction. In claims of this nature, it
is wvital that the plaintiff specify both t;_he abstraction and an
indication of what economic value the abstraction purportedly
produces; the abistraction alone is never enough.

As a hypothetical example, consider a program designed to
automate a checkbook; among other tasks, i1t dis able to priat
checks, display your check register, and reconcile the balance at
the end of the month. Abstractions used to describe this program
mightt include the organization of the database and the algorithm
used for balance reconciliation.

While these abstractions aleone may be sufficient information
from which to evaluate copyright issues, a trade secret c¢laim
must, in addition, specify the economic walue each abstraction
allegedly adds to the program. Because all of the value of
software to the end-user is in its behavior, a specification of
value in turn means specifying what economically valuable
behavicr the abstraction produces.

As an example, a technically substantive trade secret claim
might suggest that the design of the dJdatabase added economic

value because it enabled great compactness, i.e., allowed the

program to store a very large number of checks in very little
space (and this had worth in the marketplace).

Without specificatian of the valuable behavior contributed by
an element cf a program, a trade secret claim cannot be sensibly
evaluated from a technical point of view. Consider the design of
the database: to ask whether the design is cne that would result
from information generally known in the field, we have to know
what goal, i.e., what economically valuable behavicr, the designer
had in mind. The Question is not. “Would somecne <else familiar
with standard industry practice have come up with this database

design?”, but rather, “Would somecne else who was trying to

accomplish the same valuable behavior (e.g., compactness) have come

up with this database design?~

Once the plaintiff has met its initial burden by specifying
both the abstraction and its intended valuable behavier, the court
can properly frame the issues of procf and engage in factfinding
on the standard elements of trade secret status: whether the
matter was secret and whether it had any economic value. To
continue with the hypothetical, is the database design a secret
way to achieve compactness or is it something that would have
resulted from kncwn and accepted programming practices? If it is
secret, does it add economic value, that is, is the program more
valuable because of the behavior introduced by this design choice.
It is, irn any event, crucial that an abstraction alone does not
indicate what constitutes a trade secret irn software.

Finally. note that most of the design and organization in

software is routine, i.e., based on common practice. As with any

other field in which there is a body cf accumulated, routine
practice, nmost software is written wusing well-known ideas,
principles, and designs. This is particularly true for software
intended for a commercial setting, because reliability is of
paramount importance and the known {and well-tested} design
principles are the most reliable. As a consequence, trade secrets
in non-literal aspects of a program's design and organization are
typically relatively few in number, e.q., most of the
abstractions used to describe the program in the copyright
context would not qualify.

B. Procedural Implications for Trade Secret Evaluations,
Particularly in Cases Involving Both Copyright and Trade
Secret Claims.

Figure .1 ([feollowing page 12) shows our proposed process for
evaluating trade secret claims, depicted using a traditional
computer science notation called a flowchart. We believe the
proposed process fits well with the traditicnal legal mechanisms
for evaluating claims before trial, such as judgment on the
pleadings, summary judgment, and provisions for the liberal
amendment of pleadings te accord with the changing nature of proof
elicited during discovery, as well as with the liberal pleading
standards of the Federal Rules of Civil Procedure.

In order to make possible a substantive technical evaluation
of the claimed trade secrets, the plaintiff must specify to the
court at step 2 (as a necessary element of his cause of action)
the specific secrets and the value that the plaintiff claims that

€ach of them produces in software at issue. These claims are

evaluated, possibly with the assistance of a court-appointed
technical expert, at step 4, prior to permitting the plaintiff to
carry out any discovery of the defendant’s code. The rationale
behind this is simple: the plaintiff ought to be able to specify
what it believes are 1its own trade secrets independent of any
review of the defendant’s c¢ode; this will reduce the opportunity
to manufacture or inappropriately enhance claims.

While we hope that it will be an exceptional circumstance,
for completeness we include the possibility of augmenting the list
of trade secret claims after discovery. As a result of our
concerns that access to the defendant’s source code may permit the
plaintiff to distort the process, we suggest that such late-
arising claims undergo especially careful scrutiny to ensure that
they are technically appropriate and should properly be given to
the jury for consideration.

In cases that involve allegations of both copyright
infringement and misappropriation of trade secrets in computer
software, we suggest that the trial court take up the trade secret
claims first. This serves the interests of accuracy and judicial
economy Dy permitting the case to move forward on the substantive
evaluation of the plaintiff’'s trade secret claim while minimizing
the disruption to defendant and defendant'’s business interests. It
alse limits the potential for prejudicial spill-over into the
trade secret claim from the discovery of the defendant’s code on
the copyright claim.

The trade secret process can proceed as far as step 3--

determining whether the plaintiff has technically wvalid trade

11

secrets in its code--before the beginning the development of the
copyright issues in the case. At that point, whatever the outcome
of step 3 of the trade secret process, technical evaluation of the
copyright claims can begin. If no trade secret claims survive step
3, the copyright process begins alcone; if some trade secrets do
survive, processing of copyright claims c¢arn proceed in parallel.
This makes sense because the next step in the trade secret process
is discovery and, by and large, the same discovery materials will

be relevant to both trade secret and copyright claims.

12

7. Augmented claims
undergo technical
evaluation.

v

1. Plaintiff files trade secret claim.

!

2. Plaintiff specifies secreis and
cconomic value they add.

T

3. Evaluation of trade secvet claims.

v

4 Any
trade secret
claims survive
evaluation?

No

|
v Yes

{Coordinate with
copyright proceedings)

5. Discovery: exchange of cade

{

6. Additional
claims anse
from discovery?

Yes

8. Determination by trier of fact
whether surviving trade secrets afe in
defendant’s program (as well as other

relevant elements of claims)

¢

9. Verdict

Figure 1: Proposed procedure EFor trade secret claim evaluation.

13

Notes on Figure 1.

Step 5: Excharge of code typically involves releasing each side’'s
code, under non-disclosure, only toe counsel and outside technical
experts for the other side. Parties to the proceeding de not have

access to the other side’s code.

Step 8: A trade secret may be copied in a way that distributes the
secret throughout code. 1In such circumstances, there may be no
single place in the code that embodies the secret, and hence there
are no abstractions that will embody the claimed secret. Instead,
the secret must be sought by examination of the literal code, where

it may be founrnd in fragments throughout that code.

14

Iv. PERFORMING THE AFC PROCESS

A. Meeting the Consideraticns of Technical Complexity:

Refining the Magnitude of the Task.

1. Qualified Technical Experts Should Play an Important Role

in the Abstraction Process.

Given the difficulty and complexity of creating a technically
accurate set of abstractions, this Court should clarify that this
is properly a task for a cualified expert in the field. As U.S.
court of Appeals Judge John Walker, author of the Altai decision,
has ncted, “Most juries, and most judges (myself included), are
less than completely comfortable with the concepts and terminclogy
of computer programs and need extensive education in order to make
intelligent decisions.* *"Protectable “Nuggets’ Drawing the Line
Between Idea and Expression in Computer Program Copyright

Protection,* 44 J. Copyright Soc'y U.S.A. 79, 92 (Winter 1936}.

2. Refining the Task Will Reduce Technical Complexity.

In the interests of efficiency and manageability, the
abstraction process should be carried out on a well-focused body
of software. If the program is small, it may be practical to
abstract the entire thing. When possible, this is advantagecus
because the abstraction and filtration processés can be carried
oeut on the plaintiff’'s code priocr to discovery of the defendant’s
code, yielding a clear picture, early in the process, of the exact
contours of the protectable expression in the plaintiff's program.

Given the large size of most commercial programs, however,
the effort involved in abstracting and filtering the entire

Program is enormous and would vyield a daunting number of

15

exhibits. The court would likely be overwhelmed with paper and
with the filtration effort of determining protectability for
every element of the plaintiff‘s program, even if only a small
part of that program is at issue in the claim of infringement.
Thus, the obvious subset of code for analysis is that portion cf
the software that the plaintiff alleges the defendant copied.

3. The Plaintiff Must have Access Lo Lhe Defendant‘s Code

in Order to Focus the Inguiry.

In many instances, the initial evidence of copying is a
relatively insignificant incident that turns out to be only the
tip of the iceberg. For example, one case that eventually involved
claims cf extensive code theft {(bcth literal and non-literal} as
wel)l as a variety of other serious charges began when a software
developer noticed that a competing program built by former
employees of his company displayed the same misbehavicor that he
knew to be present in his own code. As a piece of misbehavior, the
behavior could not be motivated by the task, suggesting the
possibility of copying. When this initial evidence of copying is
sufficient to support a complaint, the plaintiff will need access
to the defendant's code in order to determine the full extent--if
any--of the problem.

We recognize the difficulty this access to code presents: if
the plaintiff is permitted to examine the defendant’s code before
abstracting his own code, the plaintiff may *mine the defendant’s
code for potential foci of alleged copying, thereby distorting the
inguiry. But we believe some form of difficulty is unavoidable. If

pPlaintiff instead must perform the abstraction and filtration before

16

seeing the defendant’'s code, 1t may feel that the only way to protect
the claim is ¢to abstract the entire program, resulting in an
impractical --and wasteful--amount of work for both the plaintiff and
the court., If, in the interests of economy, the plaintiff abstracts
only those parts of its code that it suspects at the outset were
copled by the defendant, the plaintiff’s exhibits are likely to be
incomplete and require augmentation after it has had the opporturnity
to examine the defendant‘s code, in which case the possibility of
"mining" reappears. In any event, we believe that manufactured claims
of copying beccme evident at the filtration stage, where the court’s
expert can raise such observations and the court can deal

appropriately with them at that time.

B. A Process for Plaintiff's Performing the AFC Evaluation

Having performed a thorough examination of the defendant's
code to evaluate the extent of copying, if any., the plaintiff‘s
technical expert can then prepare a well-focused set of exhibits
describing the relevant portions c¢f the plaintiff’‘s code at
multiple levels of abstraction. This set eof exhibits is the
plaintiff's initial contribution to the AFC process. [{See
Appendix A for a hypothetical example) .

At this point, the defendant must have access to the
pPlaintiff’s code in order te make an independent judgment as to
whether the abstractions are accurate. This must include access to
the plaintiff’s entire program, even though the abstractions may deal

with only a small part of the program, in order to test for errors of

omission.

17

The court will now have before it a set of exhibits describing
a carefully selected portion of the plaintiff’s code, wiich the
plaintiff c¢laims is both protected and infringed. It is now in a
position to evaluate the first of these claims independent of the
second, and we suggest it do so, proceeding with the filtration test.

This approach has several significant advantages. If the
exhibits contain no protectable material, the case is over, cf. Lotus

Dev. Corp. v. Borland Int‘l. Inc., 34 U.S.P.Q. 1014 (lst Cir. 1995),

aff'd. by an equally divided court, 116 S.Ct., 804 (19386). {(holding

that AFC test unnecessary when menu command hierarchy constituted a
"method of operation” that is uncopyrightable wnder 17 U.S5.C.
102(b)). ~he defendant is spared unnecessary expense, yet the
plaintiff has had a Eull opportunity to find copying in the
defendant's program. As a matter of practicality, this may be a
significant wvirtue in a world where litigation may be used as an
economic weapon, particularly against smaller corpanies, of which
there are many in the software world.

An additional advantage arises from the reduced workloac
presented to the court: by focusing the filtration purely on the
plaintiff’s exhibits, there is no need for the court to examine or
display the defendant’'s code at this point. Finally, if the
plaintiff understands that infringement claims will be required to
pass the filtration test relatively early in the litigation
process, independent of any court consideration of the defendant’'s
code, the plaintiff may perform more careful analysis before

filing infringement cases.

18

After the filtration is complete, the court should require
the plaintiff to augment its exhibits with specifi¢ references to
the defendant’s code, indicating the exact lines of the
defendant ‘s code that it alleges are copied from the plaintiff’'s
software'. Plaintiff’s specific¢ allegations will further focus the
court’s task and enable the defendant better to perform the next
step, having the defendant’s expert prepare abstraction exhibits
of the defendant’s code.

The irherent flexibility o©f the abstraction process,
invelving as it does many judgment calls, reguires that the court
permit each side to abstract its own code and to prepare its own
abstraction exhibits embodying that analysis., The fact that the
district court in the present case apparently permitted the
plaintiff to prepare the abstraction exhibits for both parties,
subject to defense cobjiections, demonstratez once again a lewvel of
uncertainty as to the technical limitations of the AFC process.

The AFC process is not a magic wand that will eliminate
disagreement; it is instead a framework within which the parties
may carry out a discussion. As experts In the field, we anticipate
that there will, in fact, be disagreement over the abstraction
exhibits. Indeed, these arguments may hold the key to the
remainder of the case. For this reason, the court should require
the parties tc offer technical grounds both in defense of their

choices and when challenging the choices made by the opposing

* Even where the plaintiff alleges non-literal copying, the plaintiff

should be able to cite specific lines of the defendant’s program that

aembody the non-literal element (s} allegedly copied.

19

party. Even so, if the parties cannot reach agreement on the
challenged exhibits, this Court should advise the district courts
to consider seriocusly the appointment of a neutral expert of its
own in order to assist in arriving at a consensus as to what
constitutes an accurate, specific, and complete description of the
code in guestion.

With these agreed-upon exhibits in place, the court is now
ready to begin the ¢omparison process. The trier of fact will now
have befcre it a set of exhibits characterizing specific elements
from plaintiff‘s program that are subject to copyright protection,
along with corresponding elements from the defendant’s program
that the plaintiff alleges are infringing.

We summarize this set of suggested steps in the AFC process
in Figure 2. Note that in step 2 we suggest some form of early
technical evaluation of the plaintiff’'s initial <¢opyright
infringement claims; that is, the plaintiff should be required to
establish at this early stage of litigation some minimal technical
evidence of infringement in order to proceed with its claim. We
believe that our approach 1s consistent with federal procedure for
the evaluation of cases before trial, particularly in the form of
motions for summary judgment. See, e.g., Fed.R.Civ.P. 56; cf.
Fed.R.Civ.P, 11.

We further suggest that thig Court encourage trial courts to
have the plaintiff meet this minimal burden through the independent
evaluation of the plaintiffrs ¢laim by a court-appointed expert or by
support from disinterested third parties, concerning the technical

substance of the initial evidence for infringement. Such a barrier,

2C

even if relatively modest, would set some threshold level of
technical substance to deter the filing of cases for little more than
economic reasons (i.e., to interrupt the business of a competitor).
We believe that, given the extensive time, effort, and expense of
fighting a lawsuit, this process is a wcrthwhile way of minimizing

the undesirable economic costs of unnecessary litigation.

21

1. Plaintiff files copyright claim.

No technical substance
(or non-copyrightable, .
following Lotus v. Boriand)

l Technically substantive

3. Discovery: exchange of source code

|

4. Plaintiff abstracts its own code

l

S, Plaintiff & defendant discuss plaintiff’s abstractions

}

6. Rltation

v

No

[£. Defendant abstracts its own code

v

9. Plaintiff & defendant discuss defendant’s abstractions

¥
10. Comparison of agreed-on exhibits by trier of fact

¥

11. Verdict

Figure 2: Proposed procedure for performing the AFC test.

22

C. Meeting the Considerations of Technical Complexity:
Providing Standards for Abstraction
Although there is considerable art in abstracting a computer

program, it 1s both possible {and useful) for this Court to give

both the lower courts and litigants additional guidance regarding
standards for abstracting software in cases invelving allegations
of copyright infringement. Such guidance is necessary because the
process of abstracting programs is sufficiently unstructured that
an interested party may bias the abstraction process. With this
in mind, we have already suggested that each party prepare its
own abstractions. In order further to reduce the oppeortunity for
bias, we suggest here quidelines for the production of
abstractions that may serve as a yardstick of technical quality:

(1) we identify aSpeéts of a program that generally ought to be

subject to abstractionm; (2} we call for clear reference to

specific behavior and code being abstracted in each exhibit; (3}

we reguire completeness in each abstraction exhibit at each level

of detail; and (4} we suggest standardized graphic conventions
for all exhibits.

1. Routine Abstractions Include Control Structure, Data Structure,
Data Flow, Information Architecture and Textual Organization of
the Code.

The program's control structure is the sequence of operations
that it carries out, often indicated with a well-established
graphical language of boxes and arrcws called a flowchart (a format
we used in Figures 1 and 2). Control is freguently the most complex

aspect of a program; a complete set of contrel abstractions may

23

have many levels of detail. The data structures indicate the way in
which individua} elements of information are stored in the program;
in the earlier checkbook hypothetical, for example, data structures
are used to store the sorts of information found in a check
register (e.g., check number, date, payee, amount). The data flow
is a description of how information flows through a program; that
is, how the information for a check flows from the register where
it is entered, to the check itself. The information architecture of
a program indicates the overall grganization of the data used by
the program, often in the form of the organization of databases.

All of these abstractiocns concern the behavior of the program.
Because programs can be viewed in terms of both their behavior and
their text [(treating the source code as a body of text}), we can
alsc describe the organization «f the textual code itself at
several levels of abstraction, ranging for exanmple, from individual
routines, to files containing nmultiple routines, to directories
containing multiple files.

2, Abstractions Should be Specific and Precise.

As one indicator of such precision, there should be no
anpiguity aboul what behavior is being described and what body of
literal c¢ode is being abstracted. This enables evaluation of the
accuracy and completeness of the abstractions. Courts should thus
reéuire: {(a) that labels on abstraction exhibits clearly specify
the program behavior at issue; and (b) that each conponent of an
abstraction exhibit refer clearly either to more detailed exhibits
or to literal code. In Appendix . we provide an example in which

each component of every abstraction indicates where more detail can

24

be found, by reference to other exhibits containing other (lower
level) abstractions, by naming specific¢ routines in the code, or
{at the lowest level} by citing specific lines of code.

3. Abstractions at Any Given Level Should Be Complete.

Such completeness will ensure that the exhikits present an
entire and accurate picture of the program at any chosen level of
detail. As one example, Figure 1.1 of the Appendix shows all three
capabilities of the program at that level of abstraction.
Subsequent figures provide additiomal levels of deFail for only one
of the components of that diagraw (the box labeled ™Balance
checkbook”}, but at the level of detail in Figure 1.1 the depiction
is complete. The abstraction effort can be focused on the code
relevant to the case at hand in the manner shown in the Appendix,
i.e., by cutting off the abstraction process below a certain level
for the irrelevant parts of the code.

4. Parties Should Adopt Explicit and . Consistent Graphical

Conventions for All exhibits.

The adcoption of consistent graphical conventions will permit
the trier of fact to make sensible cormparisons of the exhibits. As
we indicate in the Appendix, to a trained eye, some of the
graphical organization of the abstraction exhibits is informative,
while other elements are accidental (e.g., the left-to-right order
of certain of the boxes). If the parties cannot agree on a set of
conventions, the court’s expert should assist the parties and the

court in reaching a uniform set of standards for the exhibits.

25

V. CONCLUSION

The AFC process is a difficult and cften complex procedurs
involving a large number of technical judgments regarding computer
software in a rapidly evolving area of intellectual property law.
For the foregoing reasons, regardless of the disposition of this
case, we suggest that this Court take the opportunity to provide -
further guidance to the lower courts regarding the implementation
of the AFC process, particularly in cases involving claimsrof both

copyright infringement and trade secret misappropriation.

Dated: September 25, 1997

Respectfully submitted,

Mane N Loakein

Marc M. Arkin

140 West 62™ Street
New York, New York 10023

{212) 636-68590

Of Counsel to Amici Curiae

Computer Scientists

26

Appendix I: Sample Abstraction

Program to handle an electronic version of a checkbook

In this Appendix we provide a description of a very simple
program -— one designed to carry out a number of straightforward
tasks inveolving a checkbook -- as a way of making concrete the
notion of levels of abstraction of a program and as a way of
iliustrating scme of the technical standards that courts may
reéuire when requesting abstraction exhibits.

The small size of the program makes it possible to consider
abstracting the whole thing, yet even here we focus on just a
segment of the entire body of secftware in order to keep the

example of reasonable size.

Control Structure Abstractions

Electronic Checkbook

more detail; 1.1

Figure 1: Program at the highest level of abstraction.

[The most abstract description of the program is its overall
purpose or function.

Note that each abstraction makes reference either to another
diagram that supplies the next most detailed vwview, or to =a

specific body of code that it abstracts.]

Balance checkbook Creatc and print check Display check register

more detail: 1.1.1 more detail: 1.1.2 more detail: 1.1.3

Figure 1.1: Next more detailed level of abstraction.
{Note that the left to right order is irrelevant; the diagram
shows only that there are three separate capabilities in the

program.]

Get bank statement balance

more detail: hines 100-125

l

Adjust bank starement balance for
outstanding checks and deposits
more detail: 1.1.1.1

Get check register balance

more detail: hines 273-290

l

Adjust check register balance for service
charges, ATM withdrawals, interest
more degail: 1.1.1.2

Yes No
adjusted register
balance?
ore detail- lines 225-280
v ¥
Print: “Statcment is in balance.” Print: “Statzment and checkbook differ.”
more detail: lines 542-543 more detail: lines 623-627

Figure 1.1.1: More detailed wview of “Balance checkbook” from

Figure 1.1.

Figure 1.1.1 continued

[Arrows indicate a specific sequence of actions. A technical
expert would recognize that while the first two boxes had to be
done in that sequence (i.e., the order is recuired by the task),
and the third and fourth boxes had to be done in that sequence,
the third and fourth boxes could be done before the first and
second. That is, it doesn’t matter whether we adjust the bank
balance or the check registexr first.

A diamond is the traditional flowchart symbol indicating a
decision.

Some of the boxes here reference specific lines of code from the

program, indicating the final level of abstraction, the literal

code itself.

Submact service charges

more detail: HandleServiceChgs!

Subtract ATM withdrawals

more detail: HandleATMWithdrawls

Add interest camed

more detail: AddInterest

Figure 1.1.1.2: Next leval of detail for “Adjust chack register
balance for service chargeg, ATM withdrawals, interest” in Figure
1.1.1.

[The boxes here indicate the name of a routine in the code that
carries out the behavior described by the box. This is equally as
specific as citing lines of code and is often more
comprehensible.

A technical expert would recognize that the while the program
being described ordered these particular steps in the sequence
show, the order chosen is not at all constrained by the task and

can be selected at will by the programmer.]

Data Structure Abstracti_.pns

(Words in Bold Italic font ({other than headings) are the names
of dara structures or data abstractions in the program. As
previously, the abstractions start with the most abstract and proceed

to the most detailed.)

A Check Regispter contains one or more:
Choack Register Etitries, each of which is one of the
following:
Check
Daposgit
ATM Withdrawal
Iuterest
Service Charge
Note
[A technical expert would realize that the order in which this
list is given is irrelevant and may be chosen by the programmer.
Each of these entries should be further described, we use Check
as an example.]
Each Check contains the following information:
Check Number
Date
Payee
Mamo

Amount

The specific data structure for a Check is:

NNNN DD MMM YYYY PPPPPPPPFPPPPPPPPPFP MEMOMEMO AAAAA.AA

indicating that there are four digits for the check number, two
for the day, three characters for the wmonth, four digits for the
year, twentyY characters for the payee, eight for the meme, and
finally the amount, indicated using five digits hefore the

decimal point and two after.

Data Flow

[As one example we show the flow of information about a check from

the user’s initial input to the printing of the check.]

User Input ;
+

Update check

T

Print Check

Information Architecture

The program has two databases:

CheckBookg is a database containing information about each check book
that the program is managing for us. Each database entry indicates

the account pnumber, owner, and co-gigmer for the checkbook.

ChockReogistarData is a database containing information about
transactions in each checkbook. Each database entry indicates a

check, deposit, ATM withdrawal, interest, or service chargs.

Physical Organization of Code

The directory CODE contains all of the source code files, which
are:

UsarInteraction

BalanceChechkBook

RegisterDisplay

WriteChecks

[A more detailed description would indicate the individual

routines that make up each of these files.]

The directory DATA contains all of the system’s data structures

and databases.

TA technical expert would recognize that the physical division of
the program into source code and data directories 1is a routine

practice common in the field and done in part for reasons of

efficiency.]

APPENDIX II: TERMINOLOGY

We have attempted to minimize the amount of jargon used
above, but some technical terms are unavoidable. This appendix
provides brief definitions of these terms gufficient to remove

any mystery surrounding them.

Source code: The text o©f a program as written by the
programer; it generally looks like a combination ¢f mathematics
and English. Computer programs are written using specialized
languages designed for this purpose; there are hundreds of such
languages though perhaps only a dozen or so are in wide use.
Comunonly used languages include coBOL, Basic, ¢, and (recently)

JAVA .

Object code: Source code is translated from its English-like
notation into a much more detailed language called cobject code,
that 1s expressed as a collection of 1’s and 0°s. This language
can be understood directly by the computer as instructions to

carry out,

Control structure: one of the most basic things a programmer
does is instruct the computer as to the segquence of events that
should occour (i.e., what the program should deo and when). There
are a number of standard ways to control the segquence of events,

these are called control structures.

A~ 10

Data structure: another standard task of a programmer is
organizing the information that the program is to use. A data
structure 1is a specification of the form and content foxr
information stored in the program. A data structure for a check,
for example, might indicate that the relevant information was
check number, date, payee, and amount, and would specify the

exact form of each piece of information.

Algorithm: an algorithm is a detailed specification of all
of the steps necessary for carrying out a -task. As an example,
the monthly checking account statements from your bank aften have
the algorithm for balancing your éheckbook printed on the reverse
side of the statement. Note that an algorithm i1s a set of
instructions to enable accomplishing a task, perhaps by a human;
algorithms are not used only by computers. When done by a
computer, algorithms use data structures and contrel structures.

Algorithms can be described in flowcharts.

Comments: Virtually all computer languages make it possible
to embed textual comments in the text of a program. Such comments
are set off from the rest of the program by some textual cue,
with the result that the computer ignores them. The comments are
written in English and are intended to aid programmers in

understanding the code.

A -11

File atructure: the file structure of a program.refers to
the way it organizes information. Programs cften need to read
data from files and write information to files in arder to keep
permanent records. How these files are organized and used is an
important part of the design of a program.

Because the source code of a program is itself a collection
of files, we can alse talk about the file structure of the source
code itself (e.g., how the text of the program is organized into
component pieces, somewhat like the chapters in a book, or the

volumes of a collection).

Data flow: A data flow disgram is a map of sorts, indicating

how and where data are used throughcut the program. 1t shows the

“route” information travels as it is processed in the program.

A -~ 12

